Robust computation of dipole electromagnetic fields in arbitrarily anisotropic, planar-stratified environments.

نویسندگان

  • Kamalesh Sainath
  • Fernando L Teixeira
  • Burkay Donderici
چکیده

We develop a general-purpose formulation, based on two-dimensional spectral integrals, for computing electromagnetic fields produced by arbitrarily oriented dipoles in planar-stratified environments, where each layer may exhibit arbitrary and independent anisotropy in both its (complex) permittivity and permeability tensors. Among the salient features of our formulation are (i) computation of eigenmodes (characteristic plane waves) supported in arbitrarily anisotropic media in a numerically robust fashion, (ii) implementation of an hp-adaptive refinement for the numerical integration to evaluate the radiation and weakly evanescent spectra contributions, and (iii) development of an adaptive extension of an integral convergence acceleration technique to compute the strongly evanescent spectrum contribution. While other semianalytic techniques exist to solve this problem, none have full applicability to media exhibiting arbitrary double anisotropies in each layer, where one must account for the whole range of possible phenomena (e.g., mode coupling at interfaces and nonreciprocal mode propagation). Brute-force numerical methods can tackle this problem but only at a much higher computational cost. The present formulation provides an efficient and robust technique for field computation in arbitrary planar-stratified environments. We demonstrate the formulation for a number of problems related to geophysical exploration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral-domain-based scattering analysis of fields radiated by distributed sources in planar-stratified environments with arbitrarily anisotropic layers.

We discuss the numerically stable, spectral-domain computation and extraction of the scattered electromagnetic field excited by distributed sources embedded in planar-layered environments, where each layer may exhibit arbitrary and independent electrical and magnetic anisotropic response and loss profiles. This stands in contrast to many standard spectral-domain algorithms that are restricted t...

متن کامل

Closed-form representations of field components of fluorescent emitters in layered media.

Dipole radiation in and near planar stratified dielectric media is studied theoretically within the context of fluorescence microscopy, as fluorescent emitters are generally modeled by electric dipoles. Although the main emphasis of this study is placed on the closed-form representations of the field components of fluorescent emitters in layered environments in near- and far-field regions, the ...

متن کامل

Electromagnetic Fields Due to Dipole Antennas over Stratified Anisotropic Media

Solutions to the problem of radiation of dipole antennas in the presence of a stratified anisotropic media are facilitated by decomposing a general wave field into transverse magnetic (TM) and transverse electric (TE) modes. Employing the propagation matrices, wave amplitudes in any region are related to those in any other regions. The reflection coefficients, which embed all the information ab...

متن کامل

General Formulation to Investigate Scattering from Multilayer Lossy Inhomogeneous Metamaterial Planar Structures

This paper presents a general formulation to investigate the scattering from Multilayer Lossy Inhomogeneous Metamaterial Planar Structure (MLIMPS) with arbitrary number of layers and polarization. First, the dominating differential equation of transverse components of electromagnetic fields in each layers derived. Considering the general form of solution of the differential equations and the bo...

متن کامل

Radiation from a Dipole in the Proximity of a General Anisotropic Grounded Layer

The radiation from a dipole in the presence of a grounded general gyromagnetic-electric (gyrotropic) layer is investigated. The use of matrix methods i n conjunction with Fourier transformation techniques greatly facilitates the formulation of the boundary-valne problem, reducing the algebraic omplexity to a minimum, and provides a closed-form representation of the electromagnetic field over th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 89 1  شماره 

صفحات  -

تاریخ انتشار 2014